
NOTE ON MMAT 5010: LINEAR ANALYSIS (2017 1ST TERM)

CHI-WAI LEUNG

1. Lecture 1: Normed spaces

Throughout this note, we always denote K by the real field R or the complex field C. Let N be the
set of all natural numbers. Also, we write a sequence of numbers as a function x : {1, 2, ...} → K.

Definition 1.1. Let X be a vector space over the field K. A function ‖ · ‖ : X → R is called a
norm on X if it satisfies the following conditions.

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(ii) ‖αx‖ = |α|‖x‖ for all α ∈ K and x ∈ X.

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

In this case, the pair (X, ‖ · ‖) is called a normed space.
Also, the distance between the elements x and y in X is defined by ‖x− y‖.

The following examples are important classes in the study of functional analysis.

Example 1.2. Consider X = Kn. Put

‖x‖p :=
( n∑
i=1

|xi|p
)1/p

and ‖x‖∞ := max
i=1,...,n

|xi|

for 1 ≤ p <∞ and x = (x1, ..., xn) ∈ Kn.
Then ‖ · ‖p (called the usual norm as p=2) and ‖ · ‖∞ (called the sup-norm) all are norms on Kn.

Example 1.3. Put

c0 := {(x(i)) : x(i) ∈ K, lim |x(i)| = 0}(called the null sequnce space)

and
`∞ := {(x(i)) : x(i) ∈ K, sup

i
|x(i)| <∞}.

Then c0 is a subspace of `∞. The sup-norm ‖ · ‖∞ on `∞ is defined by

‖x‖∞ := sup
i
|x(i)|

for x ∈ `∞. Let

c00 := {(x(i)) : there are only finitly many x(i)’s are non-zero}.
Also, c00 is endowed with the sup-norm defined above and is called the finite sequence space.

Example 1.4. For 1 ≤ p <∞, put

`p := {(x(i)) : x(i) ∈ K,
∞∑
i=1

|x(i)|p <∞}.

Also, `p is equipped with the norm

‖x‖p := (
∞∑
i=1

|x(i)|p)
1
p
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for x ∈ `p. Then ‖ · ‖p is a norm on `p (see [1, Section 9.1]).

Example 1.5. Let Cb(R) be the space of all bounded continuous R-valued functions f on R.
Now Cb(R) is endowed with the sup-norm, that is,

‖f‖∞ = sup
x∈R
|f(x)|

for every f ∈ Cb(R). Then ‖ · ‖∞ is a norm on Cb(R).
Also, we consider the following subspaces of Cb(X).
Let C0(R)

(
resp. Cc(R)

)
be the space of all continuous R-valued functions f on R which vanish

at infinity (resp. have compact supports), that is, for every ε > 0, there is a K > 0 such that
|f(x)| < ε (resp. f(x) ≡ 0) for all |x| > K.
It is clear that we have Cc(R) ⊆ C0(R) ⊆ Cb(R).
Now C0(R) and Cc(R) are endowed with the sup-norm ‖ · ‖∞.

Notation 1.6. From now on, (X, ‖ · ‖) always denotes a normed space over a field K.
For r > 0 and x ∈ X, let

(i) B(x, r) := {y ∈ X : ‖x− y‖ < r} (called an open ball with the center at x of radius r) and
B∗(x, r) := {y ∈ X : 0 < ‖x− y‖ < r}

(ii) B(x, r) := {y ∈ X : ‖x− y‖ ≤ r} (called a closed ball with the center at x of radius r).

Put BX := {x ∈ X : ‖x‖ ≤ 1} and SX := {x ∈ X : ‖x‖ = 1} the closed unit ball and the unit
sphere of X respectively.

Definition 1.7. Let A be a subset of X.

(i) A point a ∈ A is called an interior point of A if there is r > 0 such that B(a, r) ⊆ A. Write
int(A) for the set of all interior points of A.

(ii) A is called an open subset of X if int(A) = A.

Example 1.8. We keep the notation as above.

(i) Let Z and Q denote the set of all integers and rational numbers respectively If Z and Q both
are viewed as the subsets of R, then int(Z) and int(Q) both are empty.

(ii) The open interval (0, 1) is an open subset of R but it is not an open subset of R2. In fact,
int(0, 1) = (0, 1) if (0, 1) is considered as a subset of R but int(0, 1) = ∅ while (0, 1) is
viewed as a subset of R2.

(iii) Every open ball is an open subset of X (Check!!).

Definition 1.9. We say that a sequence (xn) in X converges to an element a ∈ X if lim ‖xn−a‖ =
0, that is, for any ε > 0, there is N ∈ N such that ‖xn − a‖ < ε for all n ≥ N .
In this case, (xn) is said to be convergent and a is called a limit of the sequence (xn).

Remark 1.10.
(i) If (xn) is a convergence sequence in X, then its limit is unique. In fact, if a and b both are the
limits of (xn), then we have ‖a− b‖ ≤ ‖a−xn‖+ ‖xn− b‖ → 0. So, ‖a− b‖ = 0 which implies that
a = b.
From now on, we write limxn for the limit of (xn) provided the limit exists.

(ii) The definition of a convergent sequence (xn) depends on the underling space where the sequence
(xn) sits in. For example, for each n = 1, 2..., let xn(i) := 1/i as 1 ≤ i ≤ n and xn(i) = 0 as i > n.
Then (xn) is a convergent sequence in `∞ but it is not convergent in c00.
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Definition 1.11. Let A be a subset of X.

(i) A point z ∈ X is called a limit point of A if for any ε > 0, there is an element a ∈ A such
that 0 < ‖z − a‖ < ε, that is, B∗(z, ε) ∩A 6= ∅ for all ε > 0.
Furthermore, if A contains the set of all its limit points, then A is said to be closed in X.

(ii) The closure of A, write A, is defined by

A := A ∪ {z ∈ X : z is a limit point of A}.

Remark 1.12. With the notation as above, it is clear that a point z ∈ A if and only if B(z, r)∩A 6= ∅
for all r > 0. This is also equivalent to saying that there is a sequence (xn) in A such that xn → a.
In fact, this can be shown by considering r = 1

n for n = 1, 2....

Proposition 1.13. With the notation as before, we have the following assertions.

(i) A is closed in X if and only if its complement X \A is open in X.
(ii) The closure A is the smallest closed subset of X containing A. The ”smallest” in here

means that if F is a closed subset containing A, then A ⊆ F .
Consequently, A is closed if and only if A = A.

Proof. If A is empty, then the assertions (i) and (ii) both are obvious. Now assume that A 6= ∅.
For part (i), let C = X \ A and b ∈ C. Suppose that A is closed in X. If there exists an element
b ∈ C \ int(C), then B(b, r) " C for all r > 0. This implies that B(b, r) ∩ A 6= ∅ for all r > 0 and
hence, b is a limit point of A since b /∈ A. It contradicts to the closeness of A. So, A = int(A) and
thus, A is open.
For the converse of (i), assume that C is open in X. Assume that A has a limit point z but z /∈ A.
Since z /∈ A, z ∈ C = int(C) because C is open. Hence, we can find r > 0 such that B(z, r) ⊆ C.
This gives B(z, r) ∩ A = ∅. This contradicts to the assumption of z being a limit point of A. So,
A must contain all of its limit points and hence, it is closed.

For part (ii), we first claim that A is closed. Let z be a limit point of A. Let r > 0. Then there
is w ∈ B∗(z, r) ∩ A. Choose 0 < r1 < r small enough such that B(w, r1) ⊆ B∗(z, r). Since w is a
limit point of A, we have ∅ 6= B∗(w, r1)∩A ⊆ B∗(z, r)∩A. So, z is a limit point of A. Thus, z ∈ A
as required. This implies that A is closed.
It is clear that A is the smallest closed set containing A.
The last assertion follows from the minimality of the closed sets containing A immediately.
The proof is finished. �

Example 1.14. Retains all notation as above. We have c00 = c0 ⊆ `∞.
Consequently, c0 is a closed subspace of `∞ but c00 is not.

Proof. We first claim that c00 ⊆ c0. Let z ∈ `∞. It suffices to show that if z ∈ c00, then z ∈ c0, that
is, lim

i→∞
z(i) = 0. Let ε > 0. Then there is x ∈ B(z, ε)∩ c00 and hence, we have |x(i)− z(i)| < ε for

all i = 1, 2..... Since x ∈ c00, there is i0 ∈ N such that x(i) = 0 for all i ≥ i0. Therefore, we have
|z(i)| = |z(i)− x(i)| < ε for all i ≥ i0. So, z ∈ c0 as desired.

For the reverse inclusion, let w ∈ c0. It needs to show that B(w, r) ∩ c00 6= ∅ for all r > 0. Let
r > 0. Since w ∈ c0, there is i0 such that |w(i)| < r for all i ≥ i0. If we let x(i) = w(i) for 1 ≤ i < i0
and x(i) = 0 for i ≥ i0, then x ∈ c00 and ‖x− w‖∞ := sup

i=1,2...
|x(i)− w(i)| < r as required. �

2. Lecture 2: Banach Spaces

A sequence (xn) in X is called a Cauchy sequence if for any ε > 0, there is N ∈ N such that
‖xm − xn‖ < ε for all m,n ≥ N . We have the following simple observation.
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Lemma 2.1. Every convergent sequence in X is a Cauchy sequence.

The following notation plays an important role in mathematics.

Definition 2.2. A subset A of X is said to be complete if if every Cauchy sequence in A is
convergent.
X is called a Banach space if X is a complete normed space.

Example 2.3. With the notation as above, we have the following examples of Banach spaces.

(i) If Kn is equipped with the usual norm, then Kn is a Banach space.
(ii) `∞ is a Banach space. In fact, if (xn) is a Cauchy sequence in `∞, then for any ε > 0,

there is N ∈ N, we have

|xn(i)− xm(i)| ≤ ‖xn − xm‖∞ < ε

for all m,n ≥ N and i = 1, 2..... Thus, if we fix i = 1, 2, .., then (xn(i))∞n=1 is a Cauchy
sequence in K. Since K is complete, the limit limn xn(i) exists in K for all i = 1, 2.... Nor
for each i = 1, 2..., we put z(i) := limn xn(i) ∈ K. Then we have z ∈ `∞ and ‖z−xn‖∞ → 0.
So, limn xn = z ∈ `∞ (Check !!!!). Thus `∞ is a Banach space.

(iii) `p is a Banach space for 1 ≤ p <∞. The proof is similar to the case of `∞.
(iv) C[a, b] is a Banach space.
(v) Let C0(R) be the space of all continuous R-valued functions f on R which are vanish at

infinity, that is, for every ε > 0, there is a M > 0 such that |f(x)| < ε for all |x| > M .
Now C0(R) is endowed with the sup-norm, that is,

‖f‖∞ = sup
x∈R
|f(x)|

for every f ∈ C0(R). Then C0(R) is a Banach space.

Proposition 2.4. Let Y be a subspace of a Banach space X. Then Y is a Banach space if and
only if Y is closed in X.

Proof. For the necessary condition, we assume that Y is a Banach space. Let z ∈ Y . Then there
is a convergent sequence (yn) in Y such that yn → z. Since (yn) is convergent, it is also a Cauchy
sequence in Y . Then (yn) is also a convergent sequence in Y because Y is a Banach space. So,
z ∈ Y . This implies that Y = Y and hence, Y is closed.
For the converse statement, assume that Y is closed. Let (zn) be a Cauchy sequence in Y . Then
it is also a Cauchy sequence in X. Since X is complete, z := lim zn exists in X. Note that z ∈ Y
because Y is closed. So, (zn) is convergent in Y . Thus, Y is complete as desired. �

Corollary 2.5. c0 is a Banach space but the finite sequence c00 is not.

Proposition 2.6. Let (X, ‖ · ‖) be a normed space. Then there is a normed space (X0, ‖ · ‖0),
together with a linear map i : X → X0, satisfy the following condition.

(i) X0 is a Banach space.
(ii) The map i is an isometry, that is, ‖i(x)‖0 = ‖x‖ for all x ∈ X.

(iii) the image i(X) is dense in X0, that is, i(X) = X0.

Moreover, such pair (X0, i) is unique up to isometric isomorphism in the following sense: if (W, ‖ ·
‖1) is a Banach space and an isometry j : X →W is an isometry such that j(X) = W , then there
is an isometric isomorphism ψ from X0 onto W such that

j = ψ ◦ i : X → X0 →W.

In this case, the pair (X0, i) is called the completion of X.
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Example 2.7. Proposition 2.6 cannot give an explicit form of the completion of a given normed
space. The following examples are basically due to the uniqueness of the completion.

(i) If X is a Banach space, then the completion of X is itself.
(ii) By Corollary 2.5, the completion of the finite sequence space c00 is the null sequence space

c0.
(iii) The completion of Cc(R) is C0(R).

Definition 2.8. A subset A of a normed space X is said to be nowhere dense in X if int(A) = ∅.

Example 2.9.
(i) The set of all integers Z is a nowhere dense subset of R.
(ii) The set (0, 1) is a nowhere dense subset of R2 but it is not a nowhere dense subset of R.
(iii) Let A := {x ∈ c00 : x(n) ≥ 0, for all n = 1, 2...}. Notice that A is a closed subset of c00. We
claim that int(A) = ∅. In fact, let a ∈ A and r > 0. Since a ∈ c00, there is N such that a(n) = 0
for all n ≥ N . Now define z ∈ c00 by z(n) = x(n) for n 6= N and z(N) := −r

2 . Then z ∈ c00 \ A
and ‖z − a‖∞ < r. So, int(A) = ∅ and thus, A is a nowhere dense subset of c00.

Lemma 2.10. Let X be a Banach space. We have the following assertions.

(i) A subset A of X is nowhere dense in X if and only if the complement of A is an open dense
subset of X.

(ii) If (Wn) is a sequence of open dense subsets of X, then
⋂∞
n=1Wn 6= ∅.

Proof. For (i), let z ∈ X and r > 0. It is clear that we have B(z, r) * A if and For (ii), we first fix
an element x1 ∈W1. Since W1 is open, then there is r1 > 0 such that B(x1, r1) ⊆W1. Notice that
since W2 is open dense in X, we can find an element x2 ∈ B(x1, r1) ∩W2 and 0 < r2 < r1/2 such

that B(x2, r2) ⊆ B(x1, r1) ∩W2. To repeat the same step, we can get a sequence of element (xn)
in X and a sequence of positive numbers (rn) such that

(a) rk+1 < rk/2, and

(b) B(xk+1, rk+1) ⊆ B(xk, rk) ∩Wk+1

for all k = 1, 2, ....
From this, we see that (xk) is a Cauchy sequence in X. Then by the completeness of X, limxk = a
exists in X. It remains to show that a ∈

⋂
Wk. Fix N . Note that by the condition (b) above,

we see that xk ∈ B(xN , rN ) ⊆ B(xN−1, rN−1) ∩WN for all k > N . Since B(xN , rN ) is closed, we

see that a = limxk ∈ B(xN , rN ). This implies that a ∈ WN . Therefore,
⋂
Wk is non-empty as

required. �

Theorem 2.11. Baire Category Theorem: Let X be a Banach space. Suppose that X =⋃∞
n=1An for a sequence of subsets (An) of X. Then there is An0 not nowhere dense in X.

Proof. Suppose that each An is nowhere dense in X. If we put Wn := A
c
n, then each Wn is an open

dense subset of X by Lemma 2.10 (i). Lemma 2.10 (ii) implies that
⋂
Wn 6= ∅. This gives

X )
(⋂

Wn

)c
=
⋃
W c
n =

⋃
An ⊇

⋃
An = X.

This leads to a contradiction. The proof is finished. �

3. Lecture 3: Series in normed spaces

Throughout this section, let X be a normed space.
Let (xn) be a sequence elements in X. Now for each n = 1, 2, .., put sn = x1 + · · · + xn and call
the n-th partial sum of a formal series

∑∞
n=1 xn.
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Definition 3.1. With the notation as above, we say that a series
∑∞

n=1 xn is convergent in X if
the sequence of the sequence of partial sums (sn) is convergent in X. In this case, we also write

∞∑
n=1

xn := lim
n
sn ∈ X.

Moreover, we say that a series
∑∞

n=1 xn is absolutely convergent in X if
∑∞

n=1 ‖xn‖ <∞.

Lemma 3.2. Let (xn) be a Cauchy sequence in a normed space X. If (xn) has a convergent
subsequence in X, then (xn) itself is convergent too.

Proof. Let (xnk) be a convergent subsequence of (xn) and let L := limk xnk ∈ X. We are going to
show that limn xn = L.
Let ε > 0. Since (xn) is a Cauchy sequence, there is N ∈ N such that ‖xm − xn‖ < ε for all
m,n ≥ N . On the other hand, since limk xnk = L, there is K ∈ N such that nK ≥ N and
‖L−xnK‖ < ε. Thus, if n ≥ nK , we see that ‖xn−L‖ ≤ ‖xn−xnK‖+ ‖xnK −L‖ < 2ε. The proof
is finished. �

Proposition 3.3. Let X be a normed space. Then the following statements are equivalent.

(i) X is a Banach space.
(ii) Every absolutely convergent series in X is convergent.

Proof. For showing (i) ⇒ (ii), assume that X is a Banach space and let
∑
xk be an absolutely

convergent series in X. Put sn :=
∑n

k=1 xk the n-th partial sum of
∑
xk. Let ε > 0. Since the

series
∑

k xk is absolutely convergent, there is N ∈ N such that
∑

n+1≤k≤n+p
‖xk‖ < ε for all n ≥ N

and p = 1, 2..... This gives ‖sn+p − sn‖ ≤
∑

n+1≤k≤n+p
‖xk‖ < ε for all n ≥ N and p = 1, 2..... Thus,

(sn) is a Cauchy sequence in X. Then by the completeness of X, we see that the series
∑
xk is

convergent in X as desired.
Now suppose that the condition (ii) holds. Let (xn) be a Cauchy sequence in X. Notice that by the
definition of a Cauchy sequence, we can find a subsequence (xnk) of (xn) such that ‖xnk+1

−xnk‖ <
1/2k for all k = 1, 2...... From this, we see that the series

∑
k(xnk+1

−xnk) is absolutely convergent in
X. Then the condition (ii) tells us that the series

∑
k(xnk+1

−xnk) is convergent in X. Notice that

xnm = xn1 +
m∑
k=1

(xnk+1
− xnk) for all m = 1, 2, .... Therefore, (xnk)∞k=1 is a convergent subsequence

of (xn). Then by Lemma 3.2, we see that (xn) is convergent in X. The proof is finished.
�

Recall that a basis of a vector space V over K is a collection of vectors in V , say (vi)i∈I , such
that for each element x ∈ V , we have a unique expression

x =
∑
i∈I

αivi

for some αi ∈ K and all αi = 0 except finitely many αi’s.
One of fundamental properties of a vector space is that every vector space must have a basis.
The proof of this assertion is due to the Zorn’s lemma.
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Definition 3.4. A sequence (xn) is called a Schauder basis for a normed space X if for each
element x ∈ X, there is a unique sequence (αn) in K such that

(3.1) x =

∞∑
n=1

αnxn.

Remark 3.5.

(i) Notice that a Schauder basis must be linearly independent vectors. So, it is clear that every
Schauder basis is a vector basis for a finite dimensional vector space. However, a Schauder
basis need not be a vector basis for a normed space in general. For example, if we consider
the sequence (en) in c0 given by en(n) = 1; otherwise, en(i) = 0, then (en) is a Schauder
basis for c0 but it it is not a vector basis.

(ii) In the Definition 3.4, the expression 3.1 depends on the order of (xn). More precise, if we
are given a bijection σ : {1, 2...} → {1, 2...}, then the Eq 3.1 CANNOT assure that we still

have the expression x =

∞∑
n=1

ασ(n)xσ(n) for each x ∈ X.

Example 3.6. (i) If X is of finite dimension, then the vector bases are the same as the
Schauder bases.

(ii) Let en be a sequence defined as in Remark 3.5(i), then the sequence (en) is a Schauder basis
for the spaces c0 and `p for 1 ≤ p <∞.

Definition 3.7. A normed space X is said to be separable if there is a countable dense subset of
X.

Example 3.8. (i) The space Cn is separable. In fact, it is clear that (Q+ iQ)n is a countable
dense subset of Cn.

(ii) The space `∞ is an important example of nonseparable Banach space. In fact, if we put
D := {x ∈ `∞ : x(i) = 0 or 1}, then D is an uncountable subset of `∞. Moreover, we
have ‖x − y‖∞ = 1 for any x, y ∈ D with x 6= y. Thus, {B(x, 1/2) : x ∈ D} is an
uncountable family of disjoint open balls of `∞. So, if C is a countable dense subset of `∞,
then C ∩ B(x, 1/2) 6= ∅ for all x ∈ D. Also, for each element z ∈ C, there is a unique
element x ∈ D such that z ∈ B(x, 1/2). It leads to a contradiction since D is uncountable.
Therefore, `∞ is nonseparable.

Proposition 3.9. Let X be a normed space. Then X is separable if and only if there is a countable
subset A of X such that the linear span of A is dense in X, that is, for any element x ∈ X and
ε > 0, there are finite many elements x1, .., xN in A such that ‖x −

∑N
k=1 αkxk‖ < ε for some

scalars α1, .., αN .
Consequently, if X has a Schauder basis, then X is separable.

Proof. The necessary condition is clear.
We are now going to prove the converse statement. Suppose that X is the closed linear span of a
countable subset A. Now let D be the linear span of A over the field Q+ iQ. Since Q is a countable
dense subset of R, this implies that D is a countable dense subset of X. Thus, X is separable.
The last statement is clearly follows from the definition of a Schauder basis at once. �

By Proposition 3.9, we have the following important examples of separable Banach spaces at once.

Corollary 3.10. The spaces c0 and `p for 1 ≤ p <∞ all are separable.
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Remark 3.11. Proposition 3.9 leads to the following natural question which was first raised by
Banach (1932).
The Basis Problem: Does every separable Banach space have a Schauder basis?
The answer is ′′No′′.
This problem was completely solved by P. Enflo in 1973.
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