NOTE ON MMAT 5010: LINEAR ANALYSIS (2017 1ST TERM)

CHI-WAI LEUNG

1. Lecture 1: Normed spaces

Throughout this note, we always denote \mathbb{K} by the real field \mathbb{R} or the complex field \mathbb{C} . Let \mathbb{N} be the set of all natural numbers. Also, we write a sequence of numbers as a function $x: \{1, 2, ...\} \to \mathbb{K}$.

Definition 1.1. Let X be a vector space over the field \mathbb{K} . A function $\|\cdot\|: X \to \mathbb{R}$ is called a norm on X if it satisfies the following conditions.

(i) $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 if and only if x = 0.

(ii) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{K}$ and $x \in X$.

(iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

In this case, the pair $(X, \|\cdot\|)$ is called a normed space. Also, the distance between the elements x and y in X is defined by ||x - y||.

The following examples are important classes in the study of functional analysis.

Example 1.2. Consider
$$X = \mathbb{K}^n$$
. Put

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \text{ and } ||x||_\infty := \max_{i=1,\dots,n} |x_i|$$

for $1 \leq p < \infty$ and $x = (x_1, ..., x_n) \in \mathbb{K}^n$.

Then $\|\cdot\|_p$ (called the usual norm as p=2) and $\|\cdot\|_{\infty}$ (called the sup-norm) all are norms on \mathbb{K}^n .

Example 1.3. Put

$$c_0 := \{(x(i)) : x(i) \in \mathbb{K}, \lim |x(i)| = 0\}$$
 (called the null sequece space)

and

$$\ell^{\infty} := \{ (x(i)) : x(i) \in \mathbb{K}, \sup_{i} |x(i)| < \infty \}.$$

Then c_0 is a subspace of ℓ^{∞} . The sup-norm $\|\cdot\|_{\infty}$ on ℓ^{∞} is defined by

$$||x||_{\infty} := \sup |x(i)|$$

for $x \in \ell^{\infty}$. Let

 $c_{00} := \{(x(i)): \text{ there are only finitly many } x(i) \text{ 's are non-zero}\}.$

Also, c_{00} is endowed with the sup-norm defined above and is called the finite sequence space.

Example 1.4. For $1 \le p < \infty$, put

$$\ell^p := \{ (x(i)) : x(i) \in \mathbb{K}, \sum_{i=1}^{\infty} |x(i)|^p < \infty \}.$$

Also, ℓ^p is equipped with the norm

$$||x||_p := (\sum_{i=1}^{\infty} |x(i)|^p)^{\frac{1}{p}}$$

Date: September 25, 2017.

for $x \in \ell^p$. Then $\|\cdot\|_p$ is a norm on ℓ^p (see [1, Section 9.1]).

Example 1.5. Let $C^{b}(\mathbb{R})$ be the space of all bounded continuous \mathbb{R} -valued functions f on \mathbb{R} . Now $C^{b}(\mathbb{R})$ is endowed with the sup-norm, that is,

$$\|f\|_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$$

for every $f \in C^b(\mathbb{R})$. Then $\|\cdot\|_{\infty}$ is a norm on $C^b(\mathbb{R})$.

Also, we consider the following subspaces of $C^{b}(X)$.

Let $C_0(\mathbb{R})$ (resp. $C_c(\mathbb{R})$) be the space of all continuous \mathbb{R} -valued functions f on \mathbb{R} which vanish at infinity (resp. have compact supports), that is, for every $\varepsilon > 0$, there is a K > 0 such that $|f(x)| < \varepsilon$ (resp. $f(x) \equiv 0$) for all |x| > K.

It is clear that we have $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq C^b(\mathbb{R})$.

Now $C_0(\mathbb{R})$ and $C_c(\mathbb{R})$ are endowed with the sup-norm $\|\cdot\|_{\infty}$.

Notation 1.6. From now on, $(X, \|\cdot\|)$ always denotes a normed space over a field \mathbb{K} . For r > 0 and $x \in X$, let

- (i) $B(x,r) := \{y \in X : ||x y|| < r\}$ (called an open ball with the center at x of radius r) and $B^*(x,r) := \{y \in X : 0 < ||x y|| < r\}$
- (ii) $B(x,r) := \{y \in X : ||x y|| \le r\}$ (called a closed ball with the center at x of radius r).

Put $B_X := \{x \in X : ||x|| \le 1\}$ and $S_X := \{x \in X : ||x|| = 1\}$ the closed unit ball and the unit sphere of X respectively.

Definition 1.7. Let A be a subset of X.

- (i) A point $a \in A$ is called an interior point of A if there is r > 0 such that $B(a, r) \subseteq A$. Write int(A) for the set of all interior points of A.
- (ii) A is called an open subset of X if int(A) = A.

Example 1.8. We keep the notation as above.

- (i) Let \mathbb{Z} and \mathbb{Q} denote the set of all integers and rational numbers respectively If \mathbb{Z} and \mathbb{Q} both are viewed as the subsets of \mathbb{R} , then $int(\mathbb{Z})$ and $int(\mathbb{Q})$ both are empty.
- (ii) The open interval (0,1) is an open subset of \mathbb{R} but it is not an open subset of \mathbb{R}^2 . In fact, int(0,1) = (0,1) if (0,1) is considered as a subset of \mathbb{R} but $int(0,1) = \emptyset$ while (0,1) is viewed as a subset of \mathbb{R}^2 .
- (iii) Every open ball is an open subset of X (Check!!).

Definition 1.9. We say that a sequence (x_n) in X converges to an element $a \in X$ if $\lim ||x_n - a|| = 0$, that is, for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $||x_n - a|| < \varepsilon$ for all $n \ge N$.

In this case, (x_n) is said to be convergent and a is called a limit of the sequence (x_n) .

Remark 1.10.

(i) If (x_n) is a convergence sequence in X, then its limit is unique. In fact, if a and b both are the limits of (x_n) , then we have $||a - b|| \le ||a - x_n|| + ||x_n - b|| \to 0$. So, ||a - b|| = 0 which implies that a = b.

From now on, we write $\lim x_n$ for the limit of (x_n) provided the limit exists.

(ii) The definition of a convergent sequence (x_n) depends on the underling space where the sequence (x_n) sits in. For example, for each $n = 1, 2..., let x_n(i) := 1/i as 1 \le i \le n$ and $x_n(i) = 0$ as i > n. Then (x_n) is a convergent sequence in ℓ^{∞} but it is not convergent in c_{00} . **Definition 1.11.** Let A be a subset of X.

- (i) A point $z \in X$ is called a limit point of A if for any $\varepsilon > 0$, there is an element $a \in A$ such that $0 < ||z a|| < \varepsilon$, that is, $B^*(z, \varepsilon) \cap A \neq \emptyset$ for all $\varepsilon > 0$.
- Furthermore, if A contains the set of all its limit points, then A is said to be closed in X. (ii) The closure of A, write \overline{A} , is defined by

 $\overline{A} := A \cup \{ z \in X : z \text{ is a limit point of } A \}.$

Remark 1.12. With the notation as above, it is clear that a point $z \in \overline{A}$ if and only if $B(z,r) \cap A \neq \emptyset$ for all r > 0. This is also equivalent to saying that there is a sequence (x_n) in A such that $x_n \to a$. In fact, this can be shown by considering $r = \frac{1}{n}$ for n = 1, 2...

Proposition 1.13. With the notation as before, we have the following assertions.

- (i) A is closed in X if and only if its complement $X \setminus A$ is open in X.
- (ii) The closure \overline{A} is the smallest closed subset of X containing A. The "smallest" in here means that if F is a closed subset containing A, then $\overline{A} \subseteq F$. Consequently, A is closed if and only if $\overline{A} = A$.

Proof. If A is empty, then the assertions (i) and (ii) both are obvious. Now assume that $A \neq \emptyset$. For part (i), let $C = X \setminus A$ and $b \in C$. Suppose that A is closed in X. If there exists an element $b \in C \setminus int(C)$, then $B(b,r) \nsubseteq C$ for all r > 0. This implies that $B(b,r) \cap A \neq \emptyset$ for all r > 0 and hence, b is a limit point of A since $b \notin A$. It contradicts to the closeness of A. So, A = int(A) and thus, A is open.

For the converse of (i), assume that C is open in X. Assume that A has a limit point z but $z \notin A$. Since $z \notin A$, $z \in C = int(C)$ because C is open. Hence, we can find r > 0 such that $B(z,r) \subseteq C$. This gives $B(z,r) \cap A = \emptyset$. This contradicts to the assumption of z being a limit point of A. So, A must contain all of its limit points and hence, it is closed.

For part (*ii*), we first claim that A is closed. Let z be a limit point of A. Let r > 0. Then there is $w \in B^*(z,r) \cap \overline{A}$. Choose $0 < r_1 < r$ small enough such that $B(w,r_1) \subseteq B^*(z,r)$. Since w is a limit point of A, we have $\emptyset \neq B^*(w,r_1) \cap A \subseteq B^*(z,r) \cap A$. So, z is a limit point of A. Thus, $z \in \overline{A}$ as required. This implies that \overline{A} is closed.

It is clear that \overline{A} is the smallest closed set containing A.

The last assertion follows from the minimality of the closed sets containing A immediately. The proof is finished.

Example 1.14. Retains all notation as above. We have $\overline{c_{00}} = c_0 \subseteq \ell^{\infty}$. Consequently, c_0 is a closed subspace of ℓ^{∞} but c_{00} is not.

Proof. We first claim that $\overline{c_{00}} \subseteq c_0$. Let $z \in \ell^{\infty}$. It suffices to show that if $z \in \overline{c_{00}}$, then $z \in c_0$, that is, $\lim_{i \to \infty} z(i) = 0$. Let $\varepsilon > 0$. Then there is $x \in B(z, \varepsilon) \cap c_{00}$ and hence, we have $|x(i) - z(i)| < \varepsilon$ for all $i = 1, 2, \dots$. Since $x \in c_{00}$, there is $i_0 \in \mathbb{N}$ such that x(i) = 0 for all $i \ge i_0$. Therefore, we have $|z(i)| = |z(i) - x(i)| < \varepsilon$ for all $i \ge i_0$. So, $z \in c_0$ as desired.

For the reverse inclusion, let $w \in c_0$. It needs to show that $B(w,r) \cap c_{00} \neq \emptyset$ for all r > 0. Let r > 0. Since $w \in c_0$, there is i_0 such that |w(i)| < r for all $i \ge i_0$. If we let x(i) = w(i) for $1 \le i < i_0$ and x(i) = 0 for $i \ge i_0$, then $x \in c_{00}$ and $||x - w||_{\infty} := \sup_{i=1,2...} |x(i) - w(i)| < r$ as required. \Box

2. Lecture 2: Banach Spaces

A sequence (x_n) in X is called a **Cauchy sequence** if for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $||x_m - x_n|| < \varepsilon$ for all $m, n \ge N$. We have the following simple observation.

Lemma 2.1. Every convergent sequence in X is a Cauchy sequence.

The following notation plays an important role in mathematics.

Definition 2.2. A subset A of X is said to be complete if if every Cauchy sequence in A is convergent.

X is called a **Banach space** if X is a complete normed space.

Example 2.3. With the notation as above, we have the following examples of Banach spaces.

- (i) If \mathbb{K}^n is equipped with the usual norm, then \mathbb{K}^n is a Banach space.
- (ii) ℓ^{∞} is a Banach space. In fact, if (x_n) is a Cauchy sequence in ℓ^{∞} , then for any $\varepsilon > 0$, there is $N \in \mathbb{N}$, we have

$$|x_n(i) - x_m(i)| \le ||x_n - x_m||_{\infty} < \varepsilon$$

for all $m, n \ge N$ and i = 1, 2, ... Thus, if we fix i = 1, 2, ... then $(x_n(i))_{n=1}^{\infty}$ is a Cauchy sequence in K. Since K is complete, the limit $\lim_n x_n(i)$ exists in K for all i = 1, 2, ... Nor for each i = 1, 2, ... we put $z(i) := \lim_n x_n(i) \in K$. Then we have $z \in \ell^{\infty}$ and $||z - x_n||_{\infty} \to 0$. So, $\lim_n x_n = z \in \ell^{\infty}$ (Check !!!!). Thus ℓ^{∞} is a Banach space.

- (iii) ℓ^p is a Banach space for $1 \leq p < \infty$. The proof is similar to the case of ℓ^{∞} .
- (iv) C[a,b] is a Banach space.
- (v) Let $C_0(\mathbb{R})$ be the space of all continuous \mathbb{R} -valued functions f on \mathbb{R} which are vanish at infinity, that is, for every $\varepsilon > 0$, there is a M > 0 such that $|f(x)| < \varepsilon$ for all |x| > M. Now $C_0(\mathbb{R})$ is endowed with the sup-norm, that is,

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$$

for every $f \in C_0(\mathbb{R})$. Then $C_0(\mathbb{R})$ is a Banach space.

Proposition 2.4. Let Y be a subspace of a Banach space X. Then Y is a Banach space if and only if Y is closed in X.

Proof. For the necessary condition, we assume that Y is a Banach space. Let $z \in \overline{Y}$. Then there is a convergent sequence (y_n) in Y such that $y_n \to z$. Since (y_n) is convergent, it is also a Cauchy sequence in Y. Then (y_n) is also a convergent sequence in Y because Y is a Banach space. So, $z \in Y$. This implies that $\overline{Y} = Y$ and hence, Y is closed.

For the converse statement, assume that Y is closed. Let (z_n) be a Cauchy sequence in Y. Then it is also a Cauchy sequence in X. Since X is complete, $z := \lim z_n$ exists in X. Note that $z \in Y$ because Y is closed. So, (z_n) is convergent in Y. Thus, Y is complete as desired.

Corollary 2.5. c_0 is a Banach space but the finite sequence c_{00} is not.

Proposition 2.6. Let $(X, \|\cdot\|)$ be a normed space. Then there is a normed space $(X_0, \|\cdot\|_0)$, together with a linear map $i: X \to X_0$, satisfy the following condition.

- (i) X_0 is a Banach space.
- (ii) The map i is an isometry, that is, $||i(x)||_0 = ||x||$ for all $x \in X$.
- (iii) the image i(X) is dense in X_0 , that is, $i(X) = X_0$.

Moreover, such pair (X_0, i) is unique up to isometric isomorphism in the following sense: if $(W, \| \cdot \|_1)$ is a Banach space and an isometry $j : X \to W$ is an isometry such that $\overline{j(X)} = W$, then there is an isometric isomorphism ψ from X_0 onto W such that

$$j = \psi \circ i : X \to X_0 \to W.$$

In this case, the pair (X_0, i) is called the completion of X.

Example 2.7. Proposition 2.6 cannot give an explicit form of the completion of a given normed space. The following examples are basically due to the uniqueness of the completion.

- (i) If X is a Banach space, then the completion of X is itself.
- (ii) By Corollary 2.5, the completion of the finite sequence space c_{00} is the null sequence space c_0 .
- (iii) The completion of $C_c(\mathbb{R})$ is $C_0(\mathbb{R})$.

Definition 2.8. A subset A of a normed space X is said to be nowhere dense in X if $int(\overline{A}) = \emptyset$.

Example 2.9.

(i) The set of all integers \mathbb{Z} is a nowhere dense subset of \mathbb{R} .

(ii) The set (0,1) is a nowhere dense subset of \mathbb{R}^2 but it is not a nowhere dense subset of \mathbb{R} .

(iii) Let $A := \{x \in c_{00} : x(n) \ge 0, \text{ for all } n = 1, 2...\}$. Notice that A is a closed subset of c_{00} . We claim that $int(A) = \emptyset$. In fact, let $a \in A$ and r > 0. Since $a \in c_{00}$, there is N such that a(n) = 0 for all $n \ge N$. Now define $z \in c_{00}$ by z(n) = x(n) for $n \ne N$ and $z(N) := \frac{-r}{2}$. Then $z \in c_{00} \setminus A$ and $||z - a||_{\infty} < r$. So, $int(A) = \emptyset$ and thus, A is a nowhere dense subset of c_{00} .

Lemma 2.10. Let X be a Banach space. We have the following assertions.

- (i) A subset A of X is nowhere dense in X if and only if the complement of \overline{A} is an open dense subset of X.
- (ii) If (W_n) is a sequence of open dense subsets of X, then $\bigcap_{n=1}^{\infty} W_n \neq \emptyset$.

Proof. For (i), let $z \in X$ and r > 0. It is clear that we have $B(z,r) \notin \overline{A}$ if and For (ii), we first fix an element $x_1 \in W_1$. Since W_1 is open, then there is $r_1 > 0$ such that $B(x_1, r_1) \subseteq W_1$. Notice that since W_2 is open dense in X, we can find an element $x_2 \in B(x_1, r_1) \cap W_2$ and $0 < r_2 < r_1/2$ such that $\overline{B(x_2, r_2)} \subseteq B(x_1, r_1) \cap W_2$. To repeat the same step, we can get a sequence of element (x_n) in X and a sequence of positive numbers (r_n) such that

(a) $r_{k+1} < r_k/2$, and

(b) $\overline{B(x_{k+1}, r_{k+1})} \subseteq B(x_k, r_k) \cap W_{k+1}$ for all $k = 1, 2, \dots$

From this, we see that (x_k) is a Cauchy sequence in X. Then by the completeness of X, $\lim x_k = a$ exists in X. It remains to show that $a \in \bigcap W_k$. Fix N. Note that by the condition (b) above, we see that $x_k \in \overline{B(x_N, r_N)} \subseteq B(x_{N-1}, r_{N-1}) \cap W_N$ for all k > N. Since $\overline{B(x_N, r_N)}$ is closed, we see that $a = \lim x_k \in \overline{B(x_N, r_N)}$. This implies that $a \in W_N$. Therefore, $\bigcap W_k$ is non-empty as required.

Theorem 2.11. Baire Category Theorem: Let X be a Banach space. Suppose that $X = \bigcup_{n=1}^{\infty} A_n$ for a sequence of subsets (A_n) of X. Then there is A_{n_0} not nowhere dense in X.

Proof. Suppose that each A_n is nowhere dense in X. If we put $W_n := \overline{A}_n^c$, then each W_n is an open dense subset of X by Lemma 2.10 (i). Lemma 2.10 (ii) implies that $\bigcap W_n \neq \emptyset$. This gives

$$X \supseteq \left(\bigcap W_n\right)^c = \bigcup W_n^c = \bigcup \overline{A}_n \supseteq \bigcup A_n = X.$$

This leads to a contradiction. The proof is finished.

3. Lecture 3: Series in Normed spaces

Throughout this section, let X be a normed space.

Let (x_n) be a sequence elements in X. Now for each $n = 1, 2, ..., put s_n = x_1 + \cdots + x_n$ and call the *n*-th partial sum of a formal series $\sum_{n=1}^{\infty} x_n$.

Definition 3.1. With the notation as above, we say that a series $\sum_{n=1}^{\infty} x_n$ is convergent in X if the sequence of the sequence of partial sums (s_n) is convergent in X. In this case, we also write

$$\sum_{n=1}^{\infty} x_n := \lim_n s_n \in X$$

Moreover, we say that a series $\sum_{n=1}^{\infty} x_n$ is absolutely convergent in X if $\sum_{n=1}^{\infty} ||x_n|| < \infty$.

Lemma 3.2. Let (x_n) be a Cauchy sequence in a normed space X. If (x_n) has a convergent subsequence in X, then (x_n) itself is convergent too.

Proof. Let (x_{n_k}) be a convergent subsequence of (x_n) and let $L := \lim_k x_{n_k} \in X$. We are going to show that $\lim_n x_n = L$.

Let $\varepsilon > 0$. Since (x_n) is a Cauchy sequence, there is $N \in \mathbb{N}$ such that $||x_m - x_n|| < \varepsilon$ for all $m, n \ge N$. On the other hand, since $\lim_k x_{n_k} = L$, there is $K \in \mathbb{N}$ such that $n_K \ge N$ and $||L - x_{n_K}|| < \varepsilon$. Thus, if $n \ge n_K$, we see that $||x_n - L|| \le ||x_n - x_{n_K}|| + ||x_{n_K} - L|| < 2\varepsilon$. The proof is finished.

Proposition 3.3. Let X be a normed space. Then the following statements are equivalent.

- (i) X is a Banach space.
- (ii) Every absolutely convergent series in X is convergent.

Proof. For showing $(i) \Rightarrow (ii)$, assume that X is a Banach space and let $\sum x_k$ be an absolutely convergent series in X. Put $s_n := \sum_{k=1}^n x_k$ the *n*-th partial sum of $\sum x_k$. Let $\varepsilon > 0$. Since the series $\sum_k x_k$ is absolutely convergent, there is $N \in \mathbb{N}$ such that $\sum_{n+1 \le k \le n+p} ||x_k|| < \varepsilon$ for all $n \ge N$

and p = 1, 2... This gives $||s_{n+p} - s_n|| \le \sum_{n+1 \le k \le n+p} ||x_k|| < \varepsilon$ for all $n \ge N$ and p = 1, 2... Thus,

 (s_n) is a Cauchy sequence in X. Then by the completeness of X, we see that the series $\sum x_k$ is convergent in X as desired.

Now suppose that the condition (ii) holds. Let (x_n) be a Cauchy sequence in X. Notice that by the definition of a Cauchy sequence, we can find a subsequence (x_{n_k}) of (x_n) such that $||x_{n_{k+1}} - x_{n_k}|| < 1/2^k$ for all k = 1, 2..... From this, we see that the series $\sum_k (x_{n_{k+1}} - x_{n_k})$ is absolutely convergent in X. Then the condition (ii) tells us that the series $\sum_k (x_{n_{k+1}} - x_{n_k})$ is convergent in X. Notice that

 $x_{n_m} = x_{n_1} + \sum_{k=1}^{m} (x_{n_{k+1}} - x_{n_k})$ for all $m = 1, 2, \dots$ Therefore, $(x_{n_k})_{k=1}^{\infty}$ is a convergent subsequence of (x_n) . Then by Lemma 3.2, we see that (x_n) is convergent in X. The proof is finished.

Recall that a *basis* of a vector space V over K is a collection of vectors in V, say $(v_i)_{i \in I}$, such that for each element $x \in V$, we have a unique expression

$$x = \sum_{i \in I} \alpha_i v_i$$

for some $\alpha_i \in \mathbb{K}$ and all $\alpha_i = 0$ except finitely many α_i 's.

One of fundamental properties of a vector space is that **every vector space must have a basis.** The proof of this assertion is due to the *Zorn's lemma*.

(3.1)
$$x = \sum_{n=1}^{\infty} \alpha_n x_n$$

Remark 3.5.

- (i) Notice that a Schauder basis must be linearly independent vectors. So, it is clear that every Schauder basis is a vector basis for a finite dimensional vector space. However, a Schauder basis need not be a vector basis for a normed space in general. For example, if we consider the sequence (e_n) in c_0 given by $e_n(n) = 1$; otherwise, $e_n(i) = 0$, then (e_n) is a Schauder basis for c_0 but it it is not a vector basis.
- (ii) In the Definition 3.4, the expression 3.1 depends on the order of (x_n) . More precise, if we are given a bijection $\sigma : \{1, 2...\} \to \{1, 2...\}$, then the Eq 3.1 CANNOT assure that we still have the expression $x = \sum_{n=1}^{\infty} \alpha_{\sigma(n)} x_{\sigma(n)}$ for each $x \in X$.

Example 3.6. (i) If X is of finite dimension, then the vector bases are the same as the Schauder bases.

(ii) Let e_n be a sequence defined as in Remark 3.5(i), then the sequence (e_n) is a Schauder basis for the spaces c_0 and ℓ^p for $1 \le p < \infty$.

Definition 3.7. A normed space X is said to be separable if there is a countable dense subset of X.

Example 3.8. (i) The space \mathbb{C}^n is separable. In fact, it is clear that $(\mathbb{Q} + i\mathbb{Q})^n$ is a countable dense subset of \mathbb{C}^n .

(ii) The space ℓ^{∞} is an important example of nonseparable Banach space. In fact, if we put $D := \{x \in \ell^{\infty} : x(i) = 0 \text{ or } 1\}$, then D is an uncountable subset of ℓ^{∞} . Moreover, we have $||x - y||_{\infty} = 1$ for any $x, y \in D$ with $x \neq y$. Thus, $\{B(x, 1/2) : x \in D\}$ is an uncountable family of disjoint open balls of ℓ^{∞} . So, if C is a countable dense subset of ℓ^{∞} , then $C \cap B(x, 1/2) \neq \emptyset$ for all $x \in D$. Also, for each element $z \in C$, there is a unique element $x \in D$ such that $z \in B(x, 1/2)$. It leads to a contradiction since D is uncountable. Therefore, ℓ^{∞} is nonseparable.

Proposition 3.9. Let X be a normed space. Then X is separable if and only if there is a countable subset A of X such that the linear span of A is dense in X, that is, for any element $x \in X$ and $\varepsilon > 0$, there are finite many elements $x_1, ..., x_N$ in A such that $||x - \sum_{k=1}^N \alpha_k x_k|| < \varepsilon$ for some scalars $\alpha_1, ..., \alpha_N$.

Consequently, if X has a Schauder basis, then X is separable.

Proof. The necessary condition is clear.

We are now going to prove the converse statement. Suppose that X is the closed linear span of a countable subset A. Now let D be the linear span of A over the field $\mathbb{Q}+i\mathbb{Q}$. Since \mathbb{Q} is a countable dense subset of \mathbb{R} , this implies that D is a countable dense subset of X. Thus, X is separable. The last statement is clearly follows from the definition of a Schauder basis at once.

By Proposition 3.9, we have the following important examples of separable Banach spaces at once.

Corollary 3.10. The spaces c_0 and ℓ^p for $1 \le p < \infty$ all are separable.

CHI-WAI LEUNG

Remark 3.11. Proposition 3.9 leads to the following natural question which was first raised by Banach (1932).

The Basis Problem: Does every separable Banach space have a Schauder basis? The answer is "No".

This problem was completely solved by P. Enflo in 1973.

References

[1] J. Muscat, Functional Analysis, Springer, (2014).

[2] H. Royden and P. Fitzpatrick, Real analysis, fourth edition, Pearson, (2010).

[3] W. Rudin. Functional analysis, second edition, McGraw-Hill Inc, (1991).